Description
The focus of this subject is analysing the time until an event happens, such as the illness or death of a person, or the failure of a business. The issue of censored data is common in such scenarios and how to handle censored data will be discussed throughout this course. The theory, estimation and application of a variety of survival models for censored data are covered, spanning parametric, semi-parametric and non-parametric models. Machine learning methods suitable for censored data are also covered.
Subject details
Postgraduate |
ACSC71-307 |
0.125 |
Bond Business School |
- May 2022 [Standard Offering]
- September 2022 [Standard Offering]
- May 2023 [Standard Offering]
- September 2023 [Standard Offering]
|
10 |
|
- Commencing in 2022: $5,710
- Commencing in 2023: $5,860
|
Learning outcomes
1. Demonstrate an advanced understanding of censoring and lifetime random variables. 2. Estimate, analyse and compare a variety of survival models, including parametric, non-parametric and proportional hazard models. 3. Critically evaluate the benefits of machine learning techniques in survival analysis. 4. Estimate and analyse machine learning models in the presence of censored data. 5. Use a statistical package frequently used by practitioners for survival analysis.
Enrolment requirements
Requisites: ? | Pre-requisites: ? Co-requisites: ?There are no co-requisites. |
---|
Restrictions: ? | Nil |
---|
Subject dates
| Standard Offering |
---|
18/07/2021 |
13/09/2021 |
13/09/2021 |
27/09/2021 |
04/10/2021 |
26/09/2021 |
09/10/2021 |
30/10/2021 |
08/10/2021 |
| Standard Offering |
---|
16/11/2021 |
17/01/2022 |
17/01/2022 |
31/01/2022 |
07/02/2022 |
30/01/2022 |
12/02/2022 |
05/03/2022 |
11/02/2022 |
| Standard Offering |
---|
20/03/2022 |
16/05/2022 |
16/05/2022 |
30/05/2022 |
06/06/2022 |
29/05/2022 |
11/06/2022 |
02/07/2022 |
10/06/2022 |