Skip to main content
Start of main content.

Survival Analysis

General Information

The focus of this subject is analysing the time until an event happens, such as the illness or death of a person, or the failure of a business. The issue of censored data is common in such scenarios and how to handle censored data will be discussed throughout this course. The theory, estimation and application of a variety of survival models for censored data are covered, spanning parametric, semi-parametric and non-parametric models. Machine learning methods suitable for censored data are also covered.

Academic unit: Bond Business School
Subject code: ACSC71-307
Subject title: Survival Analysis
Subject level: Undergraduate
Semester/Year: January 2022
Credit points: 10.000

Enrolment requirements

Requisites:

Nil

Assumed knowledge:

Assumed knowledge is the minimum level of knowledge of a subject area that students are assumed to have acquired through previous study. It is the responsibility of students to ensure they meet the assumed knowledge expectations of the subject. Students who do not possess this prior knowledge are strongly recommended against enrolling and do so at their own risk. No concessions will be made for students’ lack of prior knowledge.

Restrictions:

Nil

Assurance of learning

Assurance of Learning means that universities take responsibility for creating, monitoring and updating curriculum, teaching and assessment so that students graduate with the knowledge, skills and attributes they need for employability and/or further study.

At Bond University, we carefully develop subject and program outcomes to ensure that student learning in each subject contributes to the whole student experience. Students are encouraged to carefully read and consider subject and program outcomes as combined elements.

Program Learning Outcomes (PLOs)

Program Learning Outcomes provide a broad and measurable set of standards that incorporate a range of knowledge and skills that will be achieved on completion of the program. If you are undertaking this subject as part of a degree program, you should refer to the relevant degree program outcomes and graduate attributes as they relate to this subject.

Find your program

Subject Learning Outcomes (SLOs)

On successful completion of this subject the learner will be able to:

  1. Demonstrate an advanced understanding of censoring and lifetime random variables.
  2. Estimate, analyse and compare a variety of survival models, including parametric, non-parametric and proportional hazard models.
  3. Critically evaluate the benefits of machine learning techniques in survival analysis.
  4. Estimate and analyse machine learning models in the presence of censored data.
  5. Use a statistical package frequently used by practitioners for survival analysis.

Generative Artificial Intelligence in Assessment

The University acknowledges that Generative Artificial Intelligence (Gen-AI) tools are an important facet of contemporary life. Their use in assessment is considered in line with students’ development of the skills and knowledge which demonstrate learning outcomes and underpin study and career success. Instructions on the use of Gen-AI are given for each assessment task; it is your responsibility to adhere to these instructions.

Type Task % Timing* Outcomes assessed
Computer-Aided Examination (Open) Comprehensive Final Examination 40% Final Examination Period 1,2,3,4,5
Computer-Aided Examination (Open) Mid Semester Exam 35% Week 7 (Mid-Semester Examination Period) 1,2,5
Technical Document§ Group assignment 1 comprising a selection of questions, many applied, designed to test the relevant learning outcomes. 10% Week 5 1,2,5
Technical Document§ Group assignment 2, same group as the first assignment, comprising a selection of questions, many applied, designed to test the relevant learning outcomes. 15% Week 11 1,2,3,4,5
  • § Indicates group/teamwork-based assessment
  • * Assessment timing is indicative of the week that the assessment is due or begins (where conducted over multiple weeks), and is based on the standard University academic calendar
  • C = Students must reach a level of competency to successfully complete this assessment.

Study Information

Submission procedures

Students must check the iLearn@Bond subject site for detailed assessment information and submission procedures.

Policy on late submission and extensions

A late penalty will be applied to all overdue assessment tasks unless an extension is granted by the subject coordinator. The standard penalty will be 10% of marks awarded to that assessment per day late with no assessment to be accepted seven days after the due date. Where a student is granted an extension, the penalty of 10% per day late starts from the new due date.

Academic Integrity

The University’s Academic Integrity Policy defines plagiarism as the act of misrepresenting as one’s own original work: another’s ideas, interpretations, words, or creative works; and/or one’s own previous ideas, interpretations, words, or creative work without acknowledging that it was used previously (i.e., self-plagiarism). The University considers the act of plagiarising to be a breach of the Student Conduct Code and, therefore, subject to the Discipline Regulations which provide for a range of penalties including the reduction of marks or grades, fines and suspension from the University.

Bond University utilises Originality Reporting software to inform academic integrity.

Feedback on assessment

Feedback on assessment will be provided to students within two weeks of the assessment submission due date, as per the Assessment Policy.

Accessibility and Inclusion Support

If you have a disability, illness, injury or health condition that impacts your capacity to complete studies, exams or assessment tasks, it is important you let us know your special requirements, early in the semester. Students will need to make an application for support and submit it with recent, comprehensive documentation at an appointment with a Disability Officer. Students with a disability are encouraged to contact the Disability Office at the earliest possible time, to meet staff and learn about the services available to meet your specific needs. Please note that late notification or failure to disclose your disability can be to your disadvantage as the University cannot guarantee support under such circumstances.

Additional subject information

A peer-evaluation system will be used in this subject to help determine the individual marks for all group assessments. As part of the requirements for Business School quality accreditation, the Bond Business School employs an evaluation process to measure and document student assessment as evidence of the extent to which program and subject learning outcomes are achieved. Some examples of student work will be retained for potential research and quality auditing purposes only. Any student work used will be treated confidentially and no student grades will be affected.

Subject curriculum

Approved on: Nov 4, 2021. Edition: 2.4
Last updated: Oct 10, 2022