Skip to main content
Start of main content.

Data Analytics for Decision Making

General Information

This subject develops the student’s facility for evidence-based decision making, by introducing students to the use and application of data. As the business world has increasing access to data, and in the availability of big data sets which allow greater understanding of customers and other business related data, effective use of the data will enable decisions to become more informed. This subject will consider the role of data in an evolving business system, discuss and review common sources of data and processes for developing superior data sets, and will introduce the quantitative methods that are needed for understanding what the data tells us re the decision we need to make. It develops an understanding of modern computational methods to solve quantitative problems in business decision making, using a case-based approach to using data.

Academic unit: Bond Business School
Subject code: BMBA71-301
Subject title: Data Analytics for Decision Making
Subject level: Postgraduate
Semester/Year: May 2023
Credit points: 10.000

Enrolment requirements

Requisites:

Nil

Assumed knowledge:

Assumed knowledge is the minimum level of knowledge of a subject area that students are assumed to have acquired through previous study. It is the responsibility of students to ensure they meet the assumed knowledge expectations of the subject. Students who do not possess this prior knowledge are strongly recommended against enrolling and do so at their own risk. No concessions will be made for students’ lack of prior knowledge.

Restrictions:

Nil

Assurance of learning

Assurance of Learning means that universities take responsibility for creating, monitoring and updating curriculum, teaching and assessment so that students graduate with the knowledge, skills and attributes they need for employability and/or further study.

At Bond University, we carefully develop subject and program outcomes to ensure that student learning in each subject contributes to the whole student experience. Students are encouraged to carefully read and consider subject and program outcomes as combined elements.

Program Learning Outcomes (PLOs)

Program Learning Outcomes provide a broad and measurable set of standards that incorporate a range of knowledge and skills that will be achieved on completion of the program. If you are undertaking this subject as part of a degree program, you should refer to the relevant degree program outcomes and graduate attributes as they relate to this subject.

Find your program

Subject Learning Outcomes (SLOs)

On successful completion of this subject the learner will be able to:

  1. Understand the role of data in evidence based decision making
  2. Examine the systems by which data is or can be made available
  3. Possess an understanding of measurement issues and processes for understanding relationships based on statistical theory
  4. Apply modern quantitative tools (Microsoft Excel) to data analysis in a business context
  5. Analyse and interpret data to provide meaningful information to assist in decision making

Generative Artificial Intelligence in Assessment

The University acknowledges that Generative Artificial Intelligence (Gen-AI) tools are an important facet of contemporary life. Their use in assessment is considered in line with students’ development of the skills and knowledge which demonstrate learning outcomes and underpin study and career success. Instructions on the use of Gen-AI are given for each assessment task; it is your responsibility to adhere to these instructions.

Type Task % Timing* Outcomes assessed
Computer-Aided Examination (Open) Final Examination/Project 50.00% Final Examination Period 1,2,3,4,5
Computer-aided Test (Closed) Minor Projects/Tests 20.00% Week 1 1,2,3,4,5
Case Analysis§ Project 30.00% Week 11 1,2,3,4,5
  • § Indicates group/teamwork-based assessment
  • * Assessment timing is indicative of the week that the assessment is due or begins (where conducted over multiple weeks), and is based on the standard University academic calendar
  • C = Students must reach a level of competency to successfully complete this assessment.

Study Information

Submission procedures

Students must check the iLearn@Bond subject site for detailed assessment information and submission procedures.

Policy on late submission and extensions

A late penalty will be applied to all overdue assessment tasks unless the Lead Educator grants an extension. The standard penalty will be 10% of marks awarded to that assessment per day late with no assessment to be accepted seven days after the due date. Where a student is granted an extension, the penalty of 10% per day late starts from the new due date.

Academic Integrity

Bond University‘s Student Code of Conduct Policy , Student Charter, Academic Integrity Policy and our Graduate Attributes guide expectations regarding student behaviour, their rights and responsibilities. Information on these topics can be found on our Academic Integrity webpage recognising that academic integrity involves demonstrating the principles of integrity (honesty, fairness, trust, professionalism, courage, responsibility, and respect) in words and actions across all aspects of academic endeavour.

Staff are required to report suspected misconduct. This includes all types of plagiarism, cheating, collusion, fabrication or falsification of data/content or other misconduct relating to assessment such as the falsification of medical certificates for assessment extensions. The longer term personal, social and financial consequences of misconduct can be severe, so please ask for help if you are unsure.

If your work is subject to an inquiry, you will be given an opportunity to respond and appropriate support will be provided. Academic work under inquiry will not be marked until the process has concluded. Penalties for misconduct include a warning, reduced grade, a requirement to repeat the assessment, suspension or expulsion from the University.

Feedback on assessment

Feedback on assessment will be provided to students according to the requirements of the Assessment Procedure Schedule A - Assessment Communication Procedure.

Whilst in most cases feedback should be provided within two weeks of the assessment submission due date, the Procedure should be checked if the assessment is linked to others or if the subject is a non-standard (e.g., intensive) subject.

Accessibility and Inclusion Support

Support is available to students where a physical, mental or neurological condition exists that would impact the student’s capacity to complete studies, exams or assessment tasks. For effective support, special requirement needs should be arranged with the University in advance of or at the start of each semester, or, for acute conditions, as soon as practicable after the condition arises. Reasonable adjustments are not guaranteed where applications are submitted late in the semester (for example, when lodged just prior to critical assessment and examination dates).

As outlined in the Accessibility and Inclusion Policy, to qualify for support, students must meet certain criteria. Students are also required to meet with the Accessibility and Inclusion Advisor who will ensure that reasonable adjustments are afforded to qualifying students.

For more information and to apply online, visit BondAbility.

Additional subject information

A peer-evaluation system will be used in this subject to help determine the individual marks for all group assessments. As part of the requirements for Business School quality accreditation, the Bond Business School employs an evaluation process to measure and document student assessment as evidence of the extent to which program and subject learning outcomes are achieved. Some examples of student work will be retained for potential research and quality auditing purposes only. Any student work used will be treated confidentially and no student grades will be affected.

Subject curriculum

Approved on: Mar 7, 2023. Edition: 2.2
Last updated: Jan 30, 2024