Introduction
The Bachelor of Health Sciences Honours program is a 90CP supervised, one-year program of independent research and study culminating in the production of a research thesis and presentation of a research seminar. Students undertake a program of course-work and research in which they conceptualise, plan, organise, undertake and report on an independent research project, whilst being supervised by a member of academic staff.

The Honours Program is offered as an add-on to the following degree programs:

- Bachelor of Biomedical Science
- Bachelor of Exercise Science
- Bachelor of Forensic Science
- Bachelor of Health Sciences
- Bachelor of Medical Laboratory Science
- Bachelor of Sports Management
- Bachelor of Sports Science

The program is a three-semester course of study which has an intake each semester.

Aims of the Honours Degree
The Bachelor of Health Sciences Honours program is designed primarily to provide graduates with the skills necessary to pursue in career in research. An Honours degree is an essential prerequisite for entry into postgraduate research Masters and PhD programs. Completion of an Honours year will also help graduates gain employment in their discipline. Honours graduates are highly valued by employers as they have demonstrated skills in written and oral communication, critical thinking and interpretation, and project management. Most research assistant positions require applicants to have successfully completed an Honours year.

The Honours program within the Faculty of Health Sciences & Medicine aims to help graduates develop skills in:
- planning and conducting research
- written and oral professional / scientific communication
- writing grant applications
- information retrieval and organisation
- project management
Structure of the Program
The Honours program consists of 90 credit points comprising both coursework and research components scheduled as follows:

SEM 1	HLSC41-140: Research Analysis & Communication (15CP)
	HLSC41-141: Research Preparation & Design (15CP)
SEM 2	HLSC44-137: Honours Thesis A (15CP)
	HLSC44-138: Honours Thesis B (15CP)
SEM 3	HLSC44-142: Honours Thesis C (30CP)

COURSEWORK COMPONENTS

HLSC41-141: Research Preparation and Design (15CP)
This subject is designed to provide the framework and skills necessary for Honours students to successfully commence a research project in the Health Sciences. Students will work closely with the Honours convenor and individual project supervisors to develop their research topic, formulate their aims and hypotheses and consider the significance of the project. Workshops will enable students to search for and retrieve, interpret and begin to critically evaluate the relevant literature in their field. Research ethics processes will be discussed and debated, and students will be assisted to complete ethics applications where appropriate for their study. Students will also review various research design strategies and identify appropriate methods for conducting their project and analysing their expected data. Finally, students will be supported to prepare and present a detailed research proposal to the Faculty.
Assessment includes: Literature review & Project Proposal

HLSC41-140: Research Analysis and Communication (15CP)
The successful conduct of research requires advanced abilities in analysis and interpretation of data, critical thinking and written and oral presentation. This subject will build on skills developed in the subject “Research Preparation & Design”, to support Honours students as they progress into the second semester of their program. A thorough coverage of mathematical and statistical procedures required to support both the project design and data analysis will be provided. Parametric and non-parametric statistical methods will be examined including t-tests, analysis of variance (ANOVA), correlation and regression. Workshops will actively develop students' skills in a variety of communication formats including the writing of discipline-specific journal articles, short abstracts and funding proposals. Students will also participate in regular presentation sessions, including oral and poster presentations.
Assessment includes: Journal Club, Statistics Assignment & Proposal Seminar
RESEARCH / DISSERTATION COMPONENT

HLSC44-140: Honours Thesis A (15CP)
Assessment includes: a 3 minute thesis (3MT) presentation, standard and extended Abstracts

HLSC44-141: Honours Thesis B (15CP)
Assessment includes: Research Skills and Engagement mark (supervisor mark), Poster Presentation.

HLSC44-142: Honours Thesis C (30CP)
This subject will constitute the major assessable component of the Honours candidature. It will be assessed according to the detailed assessment criteria provided on the basis of an evaluation of the thoroughness of the literature review, the validity and reliability of the data collected, as well as the subsequent analysis, interpretation, presentation and discussion of the results. As part of the assessment procedures, candidates will be required to prepare a full dissertation (80% of the assessment weighting) and a final seminar (20%) in which the research project and associated results will be presented and defended.

Application for admission

The program is available to students who have completed a relevant Bachelor’s degree. An application for admission to the Honours program and all relevant supporting documentation must be submitted online to Bond University at https://apply.bond.edu.au/.

Applications open on 27th February 2017 (Monday Week 7 of semester 171)
Applications close on 31st March (Friday Week 11 of semester 171)

Selection
The candidate’s application for admission to the Honours program is considered by the Honours Program Convenor in consultation with proposed/potential supervisors and the Head of Programs. In evaluating an application for admission to the Honours program, the following will be considered:

1. The undergraduate record of the applicant in a relevant Bachelor-level degree. Admission into the Honours Program requires an overall GPA of 2.0 (Credit). Eligibility for Faculty Scholarships if available (see ‘Fees & Scholarships’) requires applicant GPA of 2.5 (on 4-point scale) or 5.5 (on 7-point scale).

2. A candidate whose GPA is below required for admission into the Honours program may apply to the Dean of the Faculty for special consideration, but the candidate is unlikely to be offered a scholarship.

3. Candidates must have completed at least 60 credit points of study related to the general area of the proposed Honours research project in the last three semesters of their Bachelor’s degree.

4. Candidates must have been awarded a Bachelor’s degree that is related to the proposed Honours research project within the previous three years.

Approval of dissertation topic and supervision

All Honours dissertation topics and Supervisor(s) are approved by the Faculty prior to being offered to students.

It is essential that students discuss advertised projects with potential supervisors prior to the application deadline.

A student/supervisor agreement must be signed by both parties and submitted by e-mail to the Honours Convenor by the application deadline. Applicants who do not have the agreement of the project supervisors will NOT be considered.
Fees & Scholarships

A limited number of partial tuition-waiver scholarships may be available. The scholarship percentage a student receives is the decision of the University and not all students will necessarily receive equal scholarship amounts. Students receiving less than 100% Scholarship will be charged the standard tuition fee minus their percentage of Scholarship awarded. Note that applications received after the closing date may not be considered for a scholarship.

Fees for the School of Health Sciences Honours Program 2017: $33,606

Honours Convenors:

Associate Prof. Donna Sellers
dsellers@bond.edu.au

Assistant Prof. Anna Lohning
aloehning@bond.edu.au
FEE-HELP

Fee-help may be used to off-set the costs of fees associated with the Honours program. FEE-HELP is an interest-free loan scheme administered by the Australian Taxation Office and available to Australian citizens and those holding a permanent humanitarian visa to help pay tuition fees. For more details of the loans available, visit: www.goingtouni.gov.au.

Grades Awarded

The degree with Honours is awarded in the following classes: Honours Class I (85-100%), Honours Class IIA (75-84%), Honours Class IIB (65-74%), Honours Class III (50-64%).

Study Load & enrolment status

The HSM Honours program comprises 90CP over three semesters. Each semester has an enrolment of 30CP.
HONOURS RESEARCH PROJECTS AVAILABLE 2017
Project Title

DeNovo discovery of natural products as anticancer agents by inhibition of PARP14 and the Warburg effect.

Supervisors

Dr Stephanie Schweiker
Dr Stephan Levonis

Project Summary

Project Summary

Recent literature has highlighted that we can potentially ‘starve’ cancer cells to death by inhibiting PARP14 and the Warburg effect.[1] The Warburg effect is the change in metabolism, of glucose, in cells under hypoxic conditions. Natural products have a long history for treating various diseases and are an important area for drug discovery. Recent literature has showcased extensive studies of phytochemicals that have exhibited anti-carcinogenic activities.[2] This project will investigate a series of natural products as potential PARP14 inhibitors.

![Image of natural product]

Project aims:

I. Extensive review of Natural Products as potential PARP14 inhibitors
II. Molecular docking studies of Natural Products and Isolation of Natural Product extracts
III. Evaluate the extract’s or small molecule’s ability to selectively inhibit PARP14 over other PARPs using *in vitro* assays.

Skills:

Molecular docking studies, purification, and enzyme assays.

E-mail contact

sschweik@bond.edu.au or slevonis@bond.edu.au
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Understanding body triggers to optimise weight loss.</th>
</tr>
</thead>
</table>
| **Supervisors** | Dr Hayley M O'Neill
| | Dr Stephan Levonis
| | Dr Stephanie Schweiker |
| **Project Summary** | Project Summary
| | Obesity is considered as a global health concern as it increases the risk of multiple diseases including cardiovascular disease, diabetes and certain cancers. Non-surgical weight loss (eg. dietary restriction) is first line of therapy for treatment of obesity; however, many individuals who lose excess weight by this method regain it within the first two years [1].
| | Our current understanding of why people struggle to lose weight and keep it off is limited. The use of bariatric surgery to treat obesity has gained widespread acceptance owing, in part, to greater rapid (20-60% in first year) and sustainable weight loss (most patients maintaining >50% of initial weight loss over 5-10 years). We will look at physiological variables “body triggers” in patients before and after weight loss induced by bariatric surgery. This research has the goal to better understand body triggers to optimise weight loss strategies to combat obesity, and so benefiting the wider community.
| | This proposal seeks to perform a series of metabolic tests and obtain fat, muscle and blood samples from obese humans at rest and following bariatric surgery.
| | Students will gain experience and skills in performing human metabolic research including body composition, anthropometric measurements, resting metabolic rate by indirect calorimetry, blood and tissue biopsy collection, processing and biochemical analyses of samples obtained (mRNA expression by RTqPCR and protein by Western blotting or Enzyme Linked Immuno Sorbent Assays), data analysis, scientific writing and review of literature.
| | References
<p>| E-mail contact | haoneill@bond.edu.au |</p>
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Technology in Physiology: Can E-Workbooks Enhance Student Satisfaction and Perceptions of Developing Critical Thinking/Reasoning Skills in Physiology?</th>
</tr>
</thead>
</table>
| Supervisors | **Associate Professor Gary Hamlin,**
| | **Associate Professor Donna Sellers**
| | **Dr Sarah Long** (Deputy Director Office of Learning & Teaching) |
| Project Summary | **Project Summary**
| | **Background**
| | Modern education continues to be more learner-centred, with significant effort focussed on developing mobile e-learning based strategies to support open access to learning and learner interactivity with the content. Medical educators are increasingly bringing activity and thinking back into the classroom with approaches such as ‘the flipped classroom’. There is considerable evidence that these approaches enhance student satisfaction and accumulating evidence that these approaches enhance student’s competencies such as critical thinking and reasoning.
| | One approach used for foundation biomedical sciences within the Bond University Medical program has been the use of paper based workbooks that guide student learning outside of the classroom and prepares students for interactive and collaborative learning in scheduled classes (the flipped classroom). This approach has consistently received positive feedback from students in both program and University based evaluations. However, whether this could be further enhanced by the use of mobile and interactive e-workbooks is not yet clear. |
| | **Aims**
| | The overall aims of this project are to;
| | - Evaluate Bond University medical student use and perceptions of the use of paper based workbooks
| | - Evaluate Bond University medical student prior experiences with e-learning and preferences for e-learning based activities
| | - Develop an e-learning based workbook
| | - Trial and evaluate student use patterns of the e-workbook, satisfaction with the e-learning workbook and perceptions of the effectiveness of the e-learning workbook in preparing students for the flipped classroom and enhancing critical thinking and reasoning skills
| | **Methods**
| | This project is non-laboratory based, and would be ideal for students who have an interest in medical/biomedical education and technology. A mixed methods approach will be used and students will gain skills in:
| | i) running student focus groups and qualitative analysis of transcripts,
| | ii) undertaking surveys constructed with both open ended and Likert scale based questions that will be analysed by qualitative and quantitative methods respectively.
| | *It is anticipated that the project will lead to a manuscript, to be published in a Medical Education journal.*
<p>| | (continued on the next page) |</p>
<table>
<thead>
<tr>
<th>Project Summary</th>
<th>Significance and Expected Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With technology becoming increasingly important in education it is critical to determine whether e-workbooks and other resources enhance student experience and skills development. This project will provide:</td>
</tr>
<tr>
<td></td>
<td>i) an increased understanding of Bond Medical student preferences for, and use patterns of, e-resources in the preparation for the flipped classroom</td>
</tr>
<tr>
<td></td>
<td>ii) an increased understanding of student perceptions of the use of e-learning resources to support engagement in the flipped classroom and support development of critical thinking/reasoning skills.</td>
</tr>
<tr>
<td></td>
<td>iii) an e-learning resource to contribute to the technology enhanced learning environment within the Faculty of Health Sciences and Medicine.</td>
</tr>
</tbody>
</table>

<p>| E-mail contact | ghamlin@bond.edu.au |</p>
<table>
<thead>
<tr>
<th>Project Title</th>
<th>A three-dimensional in vitro culture system for investigating spleen tissue development</th>
</tr>
</thead>
</table>
| **Supervisors** | Assistant Professor Jonathan Tan
Dr Denver Surrao
Associate Professor Jenny Ekberg *(External; Griffith University)* |
| **Project Summary** | The function of spleen in the body is multi-faceted. It is an immune organ specialised for fighting blood-borne pathogen, it houses cells which assist the body in tissue repair, and it supports extramedullary hematopoiesis and the production of blood from stem cells. Spleen is also a naturally regenerative organ. The ability for spleen to regenerate has led to development of surgical auto-transplantation techniques that preserve organ function in patients who require spleen to be removed (eg. after severe trauma).

The cellular basis of spleen tissue regeneration is however poorly understood. Our lab has developed a mouse model transplantation assay that faithfully recapitulates native spleen regeneration, thus enabling the investigation of cells which drive this process. However, graft construction is limited by low cells numbers, and micro-surgical techniques for transplantation are technically challenging. Several new technologies in 3-dimensional organ culture now offer an *in vitro* approach for studying spleen development. This project will investigate the encapsulation of spleen stromal cells in alginate microbeads, or the use of floating liquid marbles as potential methods for generation of *in vitro* spleen ‘mini-organs’. If this outcome can be achieved, it will provide a valuable model for manipulating and assessing cells which contribute to spleen regeneration.

Current spleen auto-transplantation procedures involve whole spleen grafts in which the majority of cells first die off before new tissue regenerates. There is very little scientific basis behind current practices. Moreover, the ability of grafts to develop into full immunocompetent tissue declines with age. Overall, this research aims to understand the underlying mechanism guiding spleen tissue regeneration, which may translate into a more efficient transplant procedure, or one that improves the success of generating immune functional tissue. |
| **E-mail contact** | jtan@bond.edu.au |
Project Title

Synthetic Cannabinoid Activity with Cannabinoid & Serotonin Receptors — A 3D Quantitative Structure Activity Relationship (QSAR) study

Supervisors

Dr Anna Lohning

Project Summary

Increased use and subsequent legalisation of medicinal marijuana has triggered not only a rise in synthetic cannabinoid on the market - black, grey and white – but has been associated with a rise in adverse effects including psychosis, seizures, kidney failure and cardiotoxicity\(^1\). Although many are well characterised in the literature, many remain unscheduled and their safety and efficacy remain untested, posing a significant risk to a vulnerable population. In the U.S., five structural classes of “cannabimetic agents” were recently listed as Schedule 1 substances under the Synthetic Drug Abuse Prevention Act\(^1\).

The first cannabinoid receptor (CB\(_1\)) was first identified in 1990 and is distributed widely throughout the CNS they are also present in certain locations throughout the PNS. Shortly thereafter a CB\(_2\) receptor was discovered localised to immune cells, particularly B cells and natural killer cells. Despite decades of research, the mechanism of CB\(_2\) activation remains unclear although preclinical trials have suggested a role for CB2 blockers in chronic pain, maintaining bone density, slowing development of atherosclerotic lesions, asthma, autoimmune and inflammatory diseases, and multiple sclerosis\(^2\). Research has recently highlighted a role for the serotonin 5-\(\text{HT}\)_2 receptor in the observation of dimer formation with CB receptors adding additional complexity in the mediation of these physiological effects\(^3\). By elucidating the intricate network of signal activation underlying these events, the rational design of novel therapies for such disorders will be possible. We have previously conducted an *in silico* study of the serotonin receptor, 5-\(\text{HT}\)_3 with compounds involved in eliciting an ant-emetic effect which can assist in differentiating the structural components required to target specific receptor isoforms\(^4\).

In this study, a 3D QSAR study is planned to develop and test a pharmacophore model for predicting activity of synthetic cannabinoids that may be specific for CB1, CB2 and or that may block dimer formation. Students will gain valuable knowledge and hands on skills in quantitative 3D structure-activity analyses producing a knowledge-base and level of understanding able to be applied to many areas of research.

It is hoped that this work will form a basis upon further work may help guide development of effective synthetic cannabinoids in the treatment of a wide range of disorders.

\(^{(2)}\) Viñals, Xavier et al (2015) Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors, PLOS Biology, DOI:10.1371/journal.pbio.

\(^{(4)}\) Anna E. Lohning, Wolfgang Marx (2016) In silico investigation into the interactions between murine 5-HT3 receptor and the principle active compounds of ginger (Zingiber officinale), J Mol Graph Model, Nov;70:315-327. DOI: 10.1016/j.jmgm.2016.10.008

E-mail contact

aloehning@bond.edu.au
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Medicinal Marijuana – Determination of Synthetic Cannabinoids in Herbal Remedies by HPLC/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisors</td>
<td>Dr Anna Lohning</td>
</tr>
<tr>
<td>Project Summary</td>
<td>Increased use and subsequent legalisation of medicinal marijuana has triggered not only a rise in synthetic cannabinoid on the market - black, grey and white – but also a concomitant rise in the number of adverse effects such as psychosis, seizures, kidney failure and cardiotoxic effects following consumption. In the U.S. for example, five structural classes of “cannabinomimetic agents” were recently added to the list of Schedule 1 substances under the Synthetic Drug Abuse Prevention Act of 2012. Although many are well characterised pharmacologically in the literature, many are yet to be tested for safety and efficacy and remain unscheduled. This poses potentially significant risks to what may be considered a vulnerable population. This has provided stimulus not only into the underlying pharmacology of how these drugs work but also provides impetus to develop new and rapid methods of detection with the dynamic nature of these compounds in terms of structural diversity. This project aims firstly to conduct a literature review to categorise the diverse nature of synthetic cannabinoids and the methods with which they are currently being analysed. Then, to develop a novel and rapid protocol for the quantitative determination of a range of natural and synthetic cannabinoids, newly released onto the market which, at present, have not been banned. Students will gain hands on experience in the following applications:</td>
</tr>
<tr>
<td></td>
<td>• Solid-phase extraction techniques</td>
</tr>
<tr>
<td></td>
<td>• High Performance Liquid Chromatography instrument with UV/Mass spectrophotometric detection of their compounds.</td>
</tr>
<tr>
<td></td>
<td>• Design and Validation of a HPLC protocol</td>
</tr>
<tr>
<td>E-mail contact</td>
<td>alohning@bond.edu.au</td>
</tr>
<tr>
<td>Project Title</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Mechanisms controlling contractile tone of the ureter</td>
<td></td>
</tr>
<tr>
<td>Supervisors</td>
<td></td>
</tr>
<tr>
<td>Professor Russ Chess-Williams</td>
<td></td>
</tr>
<tr>
<td>Associate Professor Donna Sellers</td>
<td></td>
</tr>
<tr>
<td>Project Summary</td>
<td></td>
</tr>
<tr>
<td>Project Summary</td>
<td></td>
</tr>
<tr>
<td>Kidney stones are a condition that can cause severe pain (colic) as they pass down the upper urinary tract and stretch the ureter. Current treatments usually involve painkillers and do not target removal of the stones. Drugs that induce relaxation of the ureter and/or inhibit ureteral spontaneous contractile activity may be useful in relieving ureteral colic, facilitating stone passage, preparing the ureter for ureteroscopy and as an adjunctive after extracorporeal shock-wave lithotripsy.</td>
<td></td>
</tr>
<tr>
<td>Two types of contractile activity are seen in the ureter: tonic contractions throughout the ureter and spontaneous peristaltic contractions that originate in the renal pelvis. The former interferes with stone extrusion, whilst the latter will aid expulsion of the stone. The two activities are mediated via different cell types: the tonic contraction via neuronal activation of smooth muscle cells; whilst the peristaltic waves originate in pacemaker cells, which resemble the interstitial cells of Cajal (ICC) found in the gastrointestinal tract. The innervation to these cells will also differ and it should be possible to pharmacologically manipulate ureteral activity to aid stone removal.</td>
<td></td>
</tr>
<tr>
<td>There have been very few clinical trials of drugs that might influence ureteral contractile activity. One study using the antagonist tamsulosin found that α1-adrenoceptor blockade did not alter the rate of stone expulsion, but was of benefit to patients, reducing the number of colic episodes after shock wave lithotripsy and reducing the dose of analgesic required (Wang et al., 2009). Use of these α1-adrenoceptor antagonists has been highly recommended to promote the spontaneous expulsion of lower ureteral stones, or fragments of stones after extracorporeal shock wave lithotripsy, but their use currently is rare and this may be due to the lack of detailed knowledge about the mechanisms controlling contractility within the ureter.</td>
<td></td>
</tr>
<tr>
<td>The receptors and ion channels of the smooth muscle of the lower urinary tract have been quite well characterised, but there is sparse information in the literature concerning the ureters. Whilst some receptors have been identified in pig and human ureters at the mRNA, protein and functional level, although details of receptor subtypes and precise roles in regulating ureter function has yet to be established.</td>
<td></td>
</tr>
<tr>
<td>Aims of the project</td>
<td></td>
</tr>
<tr>
<td>This project will investigate which receptors and ion channels influence ureteral contractility</td>
<td></td>
</tr>
<tr>
<td>Methods to be used</td>
<td></td>
</tr>
<tr>
<td>The study will use several techniques to examine the presence and function of receptors and ion channels in the porcine ureter and human ureter.</td>
<td></td>
</tr>
<tr>
<td>- Functional studies of ureteral contraction, relaxation and spontaneous phasic contractile activity will be examined using tissue bath experiments</td>
<td></td>
</tr>
<tr>
<td>- Immunohistochemistry and RT-PCR will be performed to identify the presence and distribution of receptor and ion channel proteins</td>
<td></td>
</tr>
<tr>
<td>Significance and Expected Outcomes</td>
<td></td>
</tr>
<tr>
<td>The identification of mechanisms controlling ureteral contractility may lead to new or more effective treatments for ureteral stones.</td>
<td></td>
</tr>
<tr>
<td>E-mail contact</td>
<td></td>
</tr>
<tr>
<td>rchesswi@bond.edu.au</td>
<td></td>
</tr>
<tr>
<td>dsellers@bond.edu.au</td>
<td></td>
</tr>
<tr>
<td>Project Title</td>
<td>Medical students' perceptions of preparedness for transition and clinical practice</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Supervisors | Dr Christian Moro
Professor Michelle McLean
Assistant Professor Anne Spooner |
| Project Summary | Project Summary
BACKGROUND: The journey to becoming a doctor (clinical practice) involves a series of developmental transitions, from undergraduate medical student to an intern. Sometimes transitions can be stressful as they require a level of competence as well as confidence.
AIM: To garner students’ perceptions of their preparedness for the practice
METHODS: The prospective aspect of this study (an online survey) will canvas students’ perceptions of their preparedness for the next phase of their transition (e.g. from Year 3 to clinical rotations; Year 5 to internship) in a number of domains (e.g. knowledge; skills; communication; team work, etc.). Then, once the transition has been made, students will be canvassed (focus groups) retrospectively whether their perceptions were valid.
EXPECTED OUTCOMES: The outcomes of this study will provide a greater understanding of medical students perceived “preparedness for practice”, thereby informing the curriculum in terms of omissions, activities that are well done and where improvements can be made in easing students’ transitions at various junctures on their journey to becoming a doctor. |
| E-mail contact | cmoro@bond.edu.au or mimclean@bond.edu.au |